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Abstract— The quasi-TEM approximation for multiconductor
lines embedded in inhomogeneous hi-isotropic media is devel-
oped. It is shown that in the quasi-TEM limit a multiconductor
line in hi-isotropic media can be represented by a coupled set of

nonreciprocal and nonsymmetric circuit transmission lines. The

effect on the circuit parameters of absence of losses, reciprocity

and symmetry properties of the geometry and of the equations

is investigated. Finally, the generalization to full bianisotropic

materials is studied.

I. INTRODUCTION

T HE last few years the interest in chiral materials and

more general in bianisotropic media has grown and is still

growing rapidly. There have been made considerable advances

not only in setting up the theoretical framework but also in

the manufacturing of these materials and in their application

in new devices [1]. Interesting properties of these materials

for use in for example waveguiding structures [2], microstrip

antenna arrays [3], and absorbing and nonreflecting coatings

[4] and [5] have been studied.

Multiconductor lines in isotropic media have been studied

rigorously in the past in the full-wave and the quasi-TEM

regime. For an overview we refer to [6]. In [7] and [8] the

quasi-TEM approximation of multiconductor lines in isotropic

media was studied from a theoretical point of view. It was

shown that in the quasi-TEM limit such a multiconductor line

can be represented in circuit terms by a set of coupled trans-

mission lines described by the classical telegraphers equations.

Numerical analyses, mostly with integral equations and for

layered media, can be found for example in [9], [10] and for

the anisotropic case in [11].

In the present contribution we will first concentrate on

the analysis of multiconductor lines embedded in hi-isotropic

media. First, we will generalize the results of [7] from isotropic

to inhomogeneous hi-isotropic media and later to bianisotropic

media. We will show that in the quasi-TEM limit a mul-

Manuscript received September 27, 1994; revised December 14, 1994.
This work was supported in part by the Belgian National Fund of Scientific

Research (NFWO).
The authors are with the Electromagnetic Group, Department of Informa-

tion Technology, University of Ghent, 9000 Ghent, Belgium.
IEEE Log Number 9412056.

ticonductor line embedded in general hi-isotropic and lbian-

isotropic media can be represented by a nonreciprocal and

nonsymmetric uniform set of coupled circuit transmission

lines. In the sequel we will call these lines bitransmission

lines. To our knowledge the first paper to deal with coupled

bitransmission lines to represent the propagation in anisotropic

chiral media was [12]. A more advanced analysis of a single

nonreciprocal transmission line to represent the propagation in

a nonreciprocal waveguide was discussed in [13]. Both [12]

and [13] deal with the fullwave regime where the transmission

line model is only an approximation, which does not fc)llow

from the Maxwell equations, for the true propagation in the

waveguide. An elementary quasi-TEM approximation of a

single microstrip line on a nonreciprocal hi-isotropic substrate

was presented in [14]. In [15] a detailed study on circuit level

was made of a single bitransmission line and the equivalence

between the bitransmission line and the propagation of circu-

lary polarized plane waves in layered hi-isotropic media was

pointed out.

Secondly, we will also investigate a number of properties

of the circuit parameter matrices characterizing these bitrans-

mission lines. Especially we will investigate the effects of the

absence of losses, of reciprocity, and of symmetry properties

of the equations and geometry. Concerning the reciprocity

we will point that the nomenclature in [15] is somewhat

unfortunate.

A quasi-TEM analysis is often regarded as an approximation

for low frequencies and it is known that at low frequencies the

chirality becomes proportional to frequency [16]. However

one should keep in mind that the term low frequency was

used in two different meanings in the previous sentence. Low

frequency for the quasi-TEM limit means that the dimensions

of the cross section of the structure are small compared to the

wavelength [8], [17]. In fact the quasi-TEM analysis neglects

wave propagation effects in the cross section of the structure

and only takes propagation in the propagation direction into

account. This means that low frequency for the quasi-TEM

limit does not necessary mean low frequency for the materials.

One can still work at frequencies for the material parameters

where chirality is not necessary proportional to frequency
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Fig. 1. Geometry of a multiconductor line in an inhornogeneous hi-isotropic background medium.

and where there can exist nonreciprocity. Further it has been

shown in the isotropic case [6] that the quasi-TEM analysis

remains useful, at least qualitatively, to high frequencies for

the fundamental modes. In fact one can just regard the quasi-

TEM analysis as an approximation for the fullwave analysis

where the longitudinal field components have been neglected.

A restriction of a quasi-TEM analysis is that it assumes that

the materials are lossless. The composite hi-isotropic materials

at microwave frequencies presently constructed still contain

dielectric and chiral losses [1]. With perturbation techniques,

as is applied for the isotropic case in [18], it is easy to

include dielectric, magnetic, chiral and conductor losses in

the analysis.

In a last section we will generalise the analysis to full

bianisotropic materials. In [19] a quasi-TEM analysis for

anisotropic media was presented. We will also show for

which bianisotropic media the analysis reduces to the bi-

isotropic case. This is important because recently [20] it

has been argued that nonreciprocal materials are inherently

anisotropic or bianisotropic which would make a discussion of

nonreciprocal hi-isotropic materials obsolete. IIowever, as we

will show, the analysis for some nonreciprocal bianisotropic

media reduces to the analysis of nonreciprocal hi-isotropic

materials in the quasi-TEM limit. This fact together with the

fact that the full hi-isotropic case is not more complicated

than the reciprocal hi-isotropic (i.e. chiral) case motivates the

use of general hi-isotropic materials in the sequel. It will

also be shown that the reciprocal hi-isotropic problem, which

is a complex problem, can be reduced to the solution of a

nonreciprocal hi-isotropic problem, which is real.

The theory and results of the present paper and an ac-

companying paper [21 ], dealing with the numerical solution,

have been announced in [22]. In [21] the potential problem

constructed in this paper is solved numerically with the

method of moments and the pointmatching technique for

conductors with general cross section embedded in layered

hi-isotropic media. [21] also contains a number of examples

illustrating tlhe properties of the circuit parameters

this paper.

II. THE POTENTIAL PROBLEM

7, JULY 1995

derived in

Consider the waveguiding structure of Fig. 1 which is invari-

ant in the longitudinal z-direction and inhomogeneous in the

transversal cross section. The waveguide consist of a number

of PEC conductors with arbitrary cross section embedded in

an inhomogeneous hi-isotropic background characterized by

the following constitutive relations

D = &(T)E + ((7-)H

B = ((?-)E + V(?-)H (1)

with T = ZU,Z+ yuv. For our purposes we write (1) in a more

suitable form which corresponds to the form used in [23]

—E+ flB
~ = Ttz(r)

L4~)

H=-#E+&B (2)

where n2 (T) = e(r),u(T-) – <(r)<(r). It is assumed that the

hi-isotropic medium is lossless, i.e. that e(r) = c. (r)so and

~(r) = pr(r)po are real and that ((~) = ~(r)’ (see [16]). If

we write < as (X + jK)_ and ~ as (X – jK)fi, with

z(r) the Tellegen parameter or nonreciprocity parameter and

K(T) the chirality parameter, then absence of losses means that

also K(T) and z(~) are real. One of the conductors is chosen as

reference or ground conductor. It is allowed that parts or the

whole of this ground conductor are located at infinity. The

other conductors have finite dimensions and are numbered

from 1 to ~. An arbitrary line which connects conductor z

with the ground conductor is denoted Pi and Ci denotes the

boundq curve of this conductor. Finally Um denotes a unit

vector in the cross section perpendicular to the conductors.

We are looking for solutions of the Maxwell equations with

exp(jwt) e>cp( –j/lz) dependence. The fields, sources and
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propagation coefficient ~ are expanded in a Taylor series of

the pulsation w

Etr = Etr,o + Wl%r,l + “ “ “ EZ = EZ,o + W&l + . . .

Htr =Htr,o + wHtr,l + . . . HZ = Hz,o + WHZ,l + . . .

Dtr =Dtr,~ + WDtr,l + . . . Dz = Dz,o + WDZ,J + . . .

Btr = &r,lJ + wBtr,l + .-. B. = Bz,o +L&lz,l + . . .

.7t, = Jtr,o + wJtr,l + . . . J= = JZ,O + wJz,~ + . . .

P=po+wpl +... /3=/30 +wo, +... (3)

The subscript ‘tr’ denotes transversal components. J and p are

respectively the surface current densities and surface charge

densities on the conductor surfaces. Since the structure is

lossless and behaves fully TEM when w ~ O we have that

PO = E.,o = ~Z,O = ~Z,O = ~@l = O and Jt,,I) = O
(see also [7]). If these expansions are inserted in the Maxwell

equations and if terms of the same order in w are identified

then one obtains, amongst others, the following equations

Vtr x Etr,o = o

Vtr . Qr,(l = o

Vtr x Htr,o = o

Vtr . Btr,o = o

vtr x Ez,luZ – j~lu. X &r,O = –j~tr,o

vt, X Hz,lu= – jbl% x ~tr,o = j%,o. (4)

If on the other hand the expansions are inserted in the boundary

conditions at the conductors one obtains

‘U. x Etr,o = o un . Dtr,o = 00

un X Htr,o = Jz,o?bz ‘l& . I&,() = o

PPO
Un x Btr,o = KJZ,OUZ ‘% “ %,o = ~ (5)

where the last two conditions follow from the other ones by

using the constitutive relations (2).

The first respectively fourth equation of (4) and the first

respectively fourth equation of (5) allows us to derive I!7tr,o

respectively 13t,,0 from a scalar potential @respectively @ as

follows:

Etr,o(r) = –vt,q5(T-)Btr,o(r)= v~r x @(?-)?.lz (6)

@ is also called the flux function and corresponds to the ,z-

component AZ,O of the vector potential. If these expressions,

together with the constitutive relations (2), are combined with

the second and third equations of (4) one obtains

–Vt, . %,(b + v~= . (:Vtr x I/nLz
)

=0
P

Uz .
[(
Vtr x :Vtrd + :% x ?@Lz

)1
= o. (7)

The boundary conditions for the potentials at the conductors

are obtained from (5) and (6)

~ = constant ~ = constant

a$ ~ ah
——

an = n2’0 an
— = –pJZ,o. (8)

The set (7) and the conditions (8) define a coupled potential

problem for the potentials ~ and @.

III. THE BITRANSMISSION Lmis

Since the problem (7), (8) is a linear differential problem

there will be a linear relation between the constant potentials of

the conductors and the total surface charge and surface current

on the conductors. The potentials # and @ are chosen to be

zero on the ground conductor and the potentials of conductor

k(k=l,2, ..., N) are denoted ~k and ~~. If Qj and .Ij are

respectively the charge and current on conductor j then we

can write

Q~=~%podc=5.~k+k+5b3k$k
Ic=l Ic=l

1’

N N

13 = Jz,o dc = ~ cjk~k + ~ djk’#k

c. ,=1 ,=1

j=l,2, . . ..N (9)

where ajk, bjk, c1k and djk are coefficients which follow from
the solution of the potential problem (7), (8). If this system of

equations is solved for Qj and Ii and if a matrix formalism

is used one finds with self explaining notations that:

Q=G+E

T=z#+zl (lo)

with

~=z_~-lz

F .%-l

z = –%

z =2-1 (11)

where for example ti is the matrix of the aj, coefficients.

The matrices ~ and ~ are respectively the capacitance and— —
inductance matrix and ~ and ~ are two new matrices which

describe the coupling between the electric and magnetic prob-

lem. The circuit matrices are determined by solving the

coupled potential problem (7) 2iV times where each time

another @, or ‘@, (k = 1, 2, . ~., ~) is taken different from

zero.

To construct the transmission line equations we use the last

two equations of (4). As will be demonstrated these equiitions

show that for a modal solution the potentials ~i and ~i of the

conductors are not independent and that the charges Qi and

currents Ii on the conductors are also coupled. Let us start by

integrating the fifth equation of (4) along the path P,

—
/

Vt.Ez,l . dl + j~l
1

Etr,o . d
P. P,

=

/

-.7’ (% x %,o) “ ~ i=l,2, . . ..N. (12)
P%

By using (6) and by taking into account the fact that J!?Z,l

vanishes on the conductors one finds

~Dl+i = j4i i=l,2, . . ..N. (13)

Similarly by integrating the last equation of (4) along the

contour c; and by using the second and third boundmy
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dz

Fig. 2. Circuit representation of an infinitesimal section of two coupled bitmnsmission lines.

condition of

If (13) and

(10) and if

(4) the following equation is obtained: This generalizes the result of one line in [15]. It is easy to show

with (16) that the propagation coefficients,6 of the eigenmodes
~Pll, = jQz i=l,2, . . ..N. (14) in a lossless set (15) are real as expected. Since we assumed

(14) are multiplied by w and combined with
lossless materials in the quasi-TEM analysis the parameters

–jw@l is replaced by d/dz—inverse spatial
resulting from these analysis will always satisfy (16).

Fourier transform in the longitudinal direction-–one finds the
Second we examine the properties of a reciprocal set of

following coupled set of bitransmission line equations:
transmission lines. A set of transmission lines is reciprocal

when

d~(z)

dz
= –jwz#J(z) – jwzqz)

d~(z) = =
— = –jwc(j(z) – jwx~(z).

d.z
(15)

An infinitesimal segment of a classical set of transmission lines

corresponds to a coupled LC circuit. For the bitransmission

line of (15) a coupled voltage controlled voltage source and

a coupled current controlled current source has to be added

(see Fig. 2 for two-line case) as was shown for the single

transmission line case in [12] and [15].

IV. PROPERTIESOF C, ~, ~, AND ~

In this section we will derive a number of properties of

the ~, ~, ~, and ~ matrices which are related to the material

parameters andlor geometry of the structure of Fig. 1.

We used the quasi-TEM analysis to construct (15) which

results into some special properties for the C, ~, X, and Z

parameters as we will see. However, first we will derive

two general properties of bitransmission lines of type (15)

not restricted to the quasi-TEM analysis. First we examine

the properties of lossless bitransmission lines. The set (15)

will be lossless if 3?(d~T~*/dz) = O for all ~~(.z) and ~(.z),

with ‘W the real part of, ‘T’ the transposition operator

and ‘*’ the complex conjugate operator. If this condition is

elaborated using the relations (15) one finds after some simple

mathematics

=* XT =* =T =* ZT

c =C L =L X=2. (16)

(17)

.-
where ~(z), ~(z) and ~(.z), ~(z) are two arbitrary independent

solutions of the set (15). If (17) is elaborated using (15) one

easily finds

E=ET Z=ZT X=–Z-T. (18)

Hence for a lossless reciprocal set of bitransmission lines—
it follows that C and ~ are real and that X and Z are

imaginary. Im general the coupled bitransmission lines (15) are

nonbidirectional [24] which means that eigenmodes propagat-

ing in opposite directions in general have different propagation

coefficients. However for a reciprocal set it is easy to show,

using (18) and some properties of determinants, that

(“ “

~et 2 –p? z
c )=0

x–@

(* ~et z tJ3T z
Z7 )=07+/37 (19)

—
where ~ is the N by N unit matrix. Since the determi-

nant equations in (19) are the eigenvalue equations for the

propagation coefficients ~ and –,0 respectively, (19) proves

that reciprocal bitransmission lines are bidirectional. This

shows that for bitransmission lines the term bidirectional and

reciprocal essentially have the same meaning.

Now we derive a few properties of the C, ~, ~ and ~

parameters which are strictly related to the quasi-TEM analysis
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behind them. First assume that the whole cross-section consists

of pure nonreciprocal material, i.e. that K,(Y-)= O in the whole

cross-section. Then the potential prob~em (6), (7) is purely—
real and hence its solution ~, ~, ~ and ~ is real and of course

=, ~, ~ and ~ are also real. And due to (16) this=~eans that

~ and ~ are symmetric matrices and that ~ = Z . Hence,

the set of transmission lines is also nonreciprocal.

Assume that we know the solution G, ~, ~ and ~ for given

e(r-), U(T), ~(r) and ~(r) then there is an easy relation with

the solution for c’ = s, L’ = p, (’ = –jg and <’ = j<

which is denoted by primes. To see this let us first assume

that@ ~#Oandthat#j=@, =O (i, j=l,2, . . ..lV and

j # k) in both the original and the associated problem. If

now (7) and (8) are compared for both problems one finds

that @’(r) = #(r), @’(r) = j@(T), J~,o = jJ.,0 and p! = PO

and hence that ~’ = j~ and ~’ = ~. From (9) it then follows

that c~k = ~Cjk and a~k = aj~. Analogously one can show
that b~k = ‘jcjk and d~k = djk assuming that ~k # O and

that @~=@j=O(i, j= 1,2, . . ..~andj #k). With(n)
it is then easily proved that

cl —

c =Z7 7’=7 %+X Z’=jz (20)

Applying (20) twice (to go from & to –j& and from –j& to

–~ and at the sa~e tim~ from ( to j< and from j< to –~)

shows that both ~ and ~ change sign when both ~ and ~ or

both x and K change sign.

The result (20) has an interesting consequence. Assume that

the whole cross-section of the structure consists of pure chiral

or reciprocal material, i.e. that x(r) = O in the whole cross-

section. Then, using the technique of previous section, we can

transform this problem to a pure nonreciprocal problem treated

above. With (20) we then can conclude that ~ and ~ are real

and symmetric matrices and that ~ and ~ are imaginary with

~ = –~T. This means that the condition (18) is satisfied or

that the set of transmission lines is reciprocal for reciprocal

materials. The transition to the nonreciprocal case allows us

also to treat the chiral problem as a pure real problem.

Often the cross section of the structure, like for a mi-

crostrip line, contains a symmetry axis. In this case the

three-dimensional structure is invariant under a rotation over

180° around that symmetry axis taken in one arbitrary cross-

section, for example the section at z = O. By rotating the

structure Q(z = O) and@ = O) remain the same and 7(z = O)

and 7(z = O) change sign. From (10) it then follows that both

~ and ~ vanish. This same conclusion can also be obtained

from (15) by demanding that if /3, ~, ~ is an eigenmode that

also –~, ~, –~ is an eigenmode. In this important special

case the structure is always represented by a classical set of==
telegraphers equations with only G and L different from zero.

It is interesting to look at the case where the cross-section

is homogeneous, i.e. where e(r), p(r), ~(~) and ~(r) are

independent of r-. In this case (7) reduces to two classical

Laplace equations V~,#(r) = O and V~,~(r) = O which can

be solved independently. Now it is easy to show that if ~v

is the vacuum (e(r) = eo) capacitance matrix of the structure

that ~ and ~ are given by:

z=
ET& – X2 – 2

K z. z = $E;l (21)
P?-

with c = 1/- the speed of light in vacuum. The bi-

isotropy only influences the capacitance matrix.

The two previous paragraphs show that, although the WI-UC-

ture consists of nonreciprocal material, it is not necessary that

the corresponding bitransmission line is nonreciprocal. This

shows that a waveguide consisting of nonreciprocal materials

is not necessary nonbidirectional in accordance with [24 ].

Finally we point out a discrepancy with the theory of [15].

In [15] only a single bitransmission line is investigated and X

and Z (which are now just scalars) are respectively written as

a +jb and a –jb. The quantity a was called chirality parameter

and the quantity b nonreciprocity or Tellegen parameter. From

the pure chiral and pure nonreciprocal case handled above we

found a result which is just the opposite of this, i.e. a is due

to nonreciprocity and b due to chirality. Moreover from the

general circuit concept for reciprocity (18) it follows that a

bitransmission line with b = O and a # O is nonreciprocal and

that a line with b # O and a = O is reciprocal. The reascm for

this, in our opinion, unfortunate nomenclature of a and b in

[15] finds its origin in the application of the bitransmission

line model to the propagation of circukuy polarized plane

waves in layered hi-isotropic media. The example handled

in [15] indeed gives a nonreciprocal bitransmission line for a

reciprocal medium because only one orientation of polarization

in each propagation direction was taken into account as has

been addressed at the end of [15].

V. GENERALIZATION TO BIANISOTROPIC MEDIA

In this section the generalization to general inhomogeneous

bianisotropic materials is discussed and it is shown for which

bianisotropic materials the theory reduces to the bi-isolropic

case discussed above. For bianisotropic materials the material

parameters in (1) become dyadics. Equation (2) now becomes

D = T(T)E + D(r)ll

H = V(7-)E + W(?-)B (22)

with

~=F_$-l~ ~ = g-l

7= –p-~~
——

F=p 1. (23)

It is assumed that the material defined in (~~) is lossless
.T =* =T

which means that E ‘&>P = ~’ and < = ~“ (see

[16]). For a general material of type (22) we only have that

,6o = E.,0 = 13.,0 = O and that .7t,,0 = O but not that D.,0

and I?=,o are zero. This means that we have the following

relation between the zeroth order transversal components in

(22) after eliminating B.,o:

=1 =1
Dt,,o = T (r)l?t,,o + U (r-) Bt,,o

=1 =1
Htr,o = v (9-)Etr,ll + T“V (r-)l?tr,cl (24)
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with

where we have decomposed the four dyadics as

“(-)Ptrtr Ptrz

P=
—T
P P..ztr

(26)

with P = T, U, V, or W. Note that in (25) ~t~,~~~tr for exam-

ple denotes a transversal 2 x 2 dyad and not a. scalar product

of two vectors. Equations (4) and (6) remain unchanged but

the potentials # and V now satisfy the following equations:

=+ =!

–Vtr ~T . Vt,qb+ Vtr . U . (Vtr X t/!&) =0
?/ =1

‘u= ~[-V,, x v .v,r~ + Vtr x w ~(Vtr )( ?/Wz)] =0.
(27)

At the conductors the boundary conditions (8) have to be

replaced by

# = constant + = constant

=/ 8+ =! aJ
Ut.v. Un— —ut. W .ut — =J,,o

tha ih
(28)

where ut = UZ x Un. Since the problem is still linear (9) and

hence (10) remain valid and also (12) to (15’) remain valid.

It is interesting to remark that in the pure anisotropic case

(?= ? = O) the potential problems (27), (25) for ~~d @ are

decoupled and that ~ and ~ are zero since U and V are zero.

It can be verified that the problem (27), (28) reduces to the
xl =! =f =1

hi-isotropic case when T , U , V and W are multiples of the
+ =/ =/

unit dyadic. In fact even when T , U , V and EF’ are multiples

of the same arbitrary 2 x 2 dyadic one can also reduce

the problem to the hi-isotropic case, by means of an affine

transformation (see [16]). This means that if one can solve

the hi-isotropic case one can also solve several bianisotropic

cases. An important special case are ttniaxial materials with

the axis along the propagation direction z.

VI. CONCLUSION

The quasi-TEM analysis for multiconductor lines in in-

homogeneous isotropic media was extended to hi-isotropic

media. It was shown that in the quasi-TEM limit the multi-

conductor line can be represented in circuit terms by so-called

coupled bitransmission lines. These bitransmission lines are

characterized by four circuit matrices C, ~, X and Z. It was

further shown that for 10SS1QSSbitransmissiofl lines ~ and

=* ET ‘
and Z are Hermitian conjugates (X = Z ). For reciprocal

bitransmission lines it was shown that ~ and ~ are symmetric—
and that ~ is minus the transposed of ~. For pure chiral media

(x= O) it was shown that ~ and ~ are real and that ~ ~nd ~

are imaginary. In the pure nonreciprocal case (K = O) ~ and

~ remain real and ~ and Z also become real. Finally it was

shown that ~ and Z vanish for structures with a symmetry

axis in the cross-section. In the last section the quasi-TEM

analysis was generalized to bianisotropic media.
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