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Rigorous Quasi-TEM Analysis of Multiconductor
Transmission Lines in Bi-Isotropic Media—
Part I: Theoretical Analysis for General
Inhomogeneous Media and Generalization
to Bianisotropic Media

Frank Olyslager, Member, IEEE, Eric Laermans, and Dani€l De Zutter, Member, IEEE

Abstract— The quasi-TEM approximation for multiconductor
lines embedded in inhomogeneous bi-isotropic media is devel-
oped. It is shown that in the quasi-TEM limit a multiconductor
line in bi-isotropic media can be represented by a coupled set of
nonreciprocal and nonsymmetric circuit transmission lines. The
effect on the circuit parameters of absence of losses, reciprocity
and symmetry properties of the geometry and of the equations
is investigated. Finally, the generalization to full bianisotropic
materials is studied.

I. INTRODUCTION

HE last few years the interest in chiral materials and

more general in bianisotropic media has grown and is still
growing rapidly. There have been made considerable advances
not only in setting up the theoretical framework but also in
the manufacturing of these materials and in their application
in new devices [1]. Interesting properties of these materials
for use in for example waveguiding structures [2], microstrip
antenna arrays [3], and absorbing and nonreflecting coatings
[4] and [5] have been studied.

Multiconductor lines in isotropic media have been studied
rigorously in the past in the full-wave and the quasi-TEM
regime. For an overview we refer to [6]. In [7] and [8] the
quasi-TEM approximation of multiconductor lines in isotropic
media was studied from a theoretical point of view. It was
shown that in the quasi-TEM limit such a multiconductor line
can be represented in circuit terms by a set of coupled trans-
mission lines described by the classical telegraphers equations.
Numerical analyses, mostly with integral equations and for
layered media, can be found for example in [9], [10] and for
the anisotropic case in [11].

In the present contribution we will first concentrate on
the analysis of multiconductor lines embedded in bi-isotropic
media. First, we will generalize the results of [7] from isotropic
to inhomogeneous bi-isotropic media and later to bianisotropic
media. We will show that in the quasi-TEM limit a mul-
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ticonductor line embedded in general bi-isotropic and bian-
isotropic media can be represented by a nonreciprocal and
nonsymmetric uniform set of coupled circuit transmission
lines. In the sequel we will call these lines bitransmission
lines. To our knowledge the first paper to deal with coupled
bitransmission lines to represent the propagation in anisotropic
chiral media was [12]. A more advanced analysis of a single
nonreciprocal transmission line to represent the propagation in
a nonreciprocal waveguide was discussed in [13]. Both [12]
and [13] deal with the fullwave regime where the transmission
line model is only an approximation, which does not follow
from the Maxwell equations, for the true propagation in the
waveguide. An elementary quasi-TEM approximation of a
single microstrip line on a nonreciprocal bi-isotropic substrate
was presented in [14]. In [15] a detailed study on circuit level
was made of a single bitransmission line and the equivalence
between the bitransmission line and the propagation of circu-
lary polarized plane waves in layered bi-isotropic media was
pointed out.

Secondly, we will also investigate a number of properties
of the circuit parameter matrices characterising these bitrans-
mission lines. Especially we will investigate the effects of the
absence of losses, of reciprocity, and of symmetry properties
of the equations and geometry. Concemning the reciprocity
we will point that the nomenclature in [15] is somewhat
unfortunate.

A quasi-TEM analysis is often regarded as an approximation
for low frequencies and it is known that at low frequencies the
chirality becomes proportional to frequency [16]. However
one should keep in mind that the term low frequency was
used in two different meanings in the previous sentence. Low
frequency for the quasi-TEM limit means that the dimensions
of the cross section of the structure are small compared to the
wavelength [8], [17]. In fact the quasi-TEM analysis neglects
wave propagation effects in the cross section of the structure
and only takes propagation in the propagation direction into
account. This means that low frequency for the quasi-TEM
limit does not necessary mean low frequency for the materials.
One can still work at frequencies for the material parameters
where chirality is not necessary proportional to frequency
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and where there can exist nonreciprocity. Further it has been
shown in the isotropic case [6] that the quasi-TEM analysis
remains useful, at least qualitatively, to high frequencies for
the fundamental modes. In fact one can just regard the quasi-
TEM analysis as an approximation for the fullwave analysis
where the longitudinal field components have been neglected.

A restriction of a quasi-TEM analysis is that it assumes that
the materials are lossless. The composite bi-isotropic materials
at microwave frequencies presently constructed still contain
dielectric and chiral losses [1]. With perturbation techniques,
as is applied for the isotropic case in [18], it is easy to
include dielectric. magnetic, chiral and conductor losses in
the analysis.

In a last section we will generalise the analysis to full
bianisotropic materials. In [19] a quasi-TEM analysis for
anisotropic media was presented. We will also show for
which bianisotropic media the analysis reduces to the bi-
isotropic case. This is important because recently [20] it
has been argued that nonreciprocal materials are inherently
anisotropic or bianisotropic which would make a discussion of
nonreciprocal bi-isotropic materials obsolete. However, as we
will show, the analysis for some nonreciprocal bianisotropic
media reduces to the analysis of nonreciprocal bi-isotropic
materials in the quasi-TEM limit. This fact together with the
fact that the full bi-isotropic case is not more complicated
than the reciprocal bi-isotropic (i.e. chiral) case motivates the
use of general bi-isotropic materials in the sequel. It will
also be shown that the reciprocal bi-isotropic problem, which
is a complex problem, can be reduced to the solution of a
nonreciprocal bi-isotropic problem, which is real.

The theory and results of the present paper and an ac-
companying paper [21], dealing with the numerical solution,
have been announced in [22]. In [21] the potential problem
constructed in this paper is solved numerically with the
method of moments and the pointmatching technique for
conductors with general cross section embedded in layered
bi-isotropic media. [21] also contains a number of examples
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Geometry of a multiconductor line in an inhornogeneous bi-isotropic background medium.

illustrating the properties of the circuit parameters derived in
this paper.

II. THE POTENTIAL PROBLEM

Consider the waveguiding structure of Fig. 1 which is invari-
ant in the longitudinal z-direction and inhomogeneous in the
transversal cross section. The waveguide consist of a number
of PEC conductors with arbitrary cross section embedded in
an inhomogeneous bi-isotropic background characterized by
the following constitutive relations

D=e(r)E+£(mH
B =((r)E + u(n)H M

with 7 = zu,; + yu,. For our purposes we write (1) in a more
suitable form which corresponds to the form used in [23]

n*(r) . &)
(r) E+ B

p(r)

{(r) 1
wr) "t ® ?
where n2(r) = e(r)u(r) — {(r)&(r). Tt is assumed that the
bi-isotropic medium is lossless, i.e. that e(r) = ,(r)zo and
p(r) = pr(T)po are real and that {(r) = &(r)* (see [16]). If
we write ( as (x + jk)/Eopo and & as (x — jk),/Eoko. With
x(r) the Tellegen parameter or nonreciprocity parameter and
(r) the chirality parameter, then absence of losses means that
also x(r) and x(r) are real. One of the conductors is chosen as
reference or ground conductor. It is allowed that parts or the
whole of this ground conductor are located at infinity. The
other conductors have finite dimensions and are numbered
from 1 to N. An arbitrary line which connects conductor %
with the ground conductor is denoted P; and c¢; denotes the
boundary curve of this conductor. Finally u,, denotes a unit

vector in the cross section perpendicular to the conductors,

We are looking for solutions of the Maxwell equations with
exp(jwt) exp(—jfBz) dependence. The fields, sources and

D=
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propagation coefficient § are expanded in a Taylor series of

the pulsation w

tr =Bt +wBg 1+
Hy.=Hio+wHgy+---
Dy =Dy +wDiy+---
By =B o+ wBy g + - -

E,=E.o+wE,;+--

H, = HZ,0+wHZ,1 +---
D, = Dz,O+WDz,1 + .-
B, = Bz,O +WB2,1 + ..

Jir :Jtr,0+w']tr,1+"'
p=potwprt---

J, = z,0+w']z,1+"‘
B=PBo+whri+-- (3

The subscript ‘tr” denotes transversal components. J and p are
respectively the surface current densities and surface charge
densities on the conductor surfaces. Since the structure is
lossiess and behaves fully TEM when w — 0 we have that
ﬂO = EZ,O = Hz,O = Dz,O = Bz,O = 0 and Jtr,O =0
(see also [7]). If these expansions are inserted in the Maxwell
equations and if terms of the same order in w are identified
then one obtains, amongst others, the following equations

Vie X By o =0
Vie - Dtr,O =0
Vie X Hip g =0
Vi - Btr,O =0
Vi X By 1u, — jBi1u, X By g =—3jBu o
Vi X Hyqu, — jiu, X Hiro =Dy . )

If on the other hand the expansions are inserted in the boundary
conditions at the conductors one obtains

U, X By o =0 Uy Do =po

U, X Htr,O = Jz,O'u'z Up Btr,O =0
Kpo
Up X Btt,O :,U'Jz,Ouz Uy - Etr,O = F o)

where the last two conditions follow from the other ones by
using the constitutive relations (2).

The first respectively fourth equation of (4) and the first
respectively fourth equation of (5) allows us to derive Fi, o
respectively B;, o from a scalar potential ¢ respectively 1 as
follows:

Etr,O(r) = _Vtr¢(r) Btr,O(T) = Vi X ¢(T)'"'z )

¥ is also called the flux function and corresponds to the z-
component A, o of the vector potential. If these expressions,
together with the constitutive relations (2), are combined with
the second and third equations of (4) one obtains

n? £
_Vtr ’ —vtr¢ + Vtr * _vtr X wuz =0
7 1

U, - |:Vtr X (£v131‘<ls + lvtr X ¢uz):| =0. (7)
1 p

The boundary conditions for the potentials at the conductors
are obtained from (5) and (6)

¢ = constant 1 = constant

o¢ Iz oy
an - 2P G T ~pdz 0. ®
The set (7) and the conditions (8) define a coupled potential

problem for the potentials ¢ and ).

II. THE BITRANSMISSION LINES

Since the problem (7), (8) is a linear differential problem
there will be a linear relation between the constant potentials of
the conductors and the total surface charge and surface current
on the conductors. The potentials ¢ and + are chosen to be
zero on the ground conductor and the potentials of conductor
N) are denoted ¢ and . If ), and I; are
respectively the charge and current on conductor ; then we
can write

Q= j{ po de = Z @bk + Z by
k=2
N

I, = f Jode=> " cinpr + Z dinthr
c, k=1

k=1
j:1,2,"‘,N (9)

k(k: 1’ 2""’

where a;i, bj, c;x and dj, are coefficients which follow from
the solution of the potential problem (7), (8). If this system of
equations is solved for (); and I; and if a matrix formalism
is used one finds with self explaining notations that:

(10)

&l Ql
[
g
-
+ +
Slel

with

[u

|

it
o
I
g
i
ol

=N X Qll
o
1 gl
L
ol

Il
aull

(11)

where for example @ is the matrix of the ajj coefficients.
The matrices C and f_are respectively the capacitance and
inductance matrix and X and Z are two new matrices which
describe the coupling between the electric and magnetic prob-
lem. The circuit matrices are determined by solving the
coupled potential problem (7) 2N times where each time
another ¢y or ¥, (k = 1, 2, ---, N) is taken different from
ZEro.

To construct the transmission line equations we use the last
two equations of (4). As will be demonstrated these equations
show that for a modal solution the potentials ¢; and ; of the
conductors are not independent and that the charges (); and
currents I; on the conductors are also coupled. Let us start by
integrating the fifth equation of (4) along the path P,

- / VuE.. dl+jB / Eyo-dl
P, P,

:—j/(uszt,’O)dl i=1,2,---,N. (12)
P,

By using (6) and by taking into account the fact that £, 1
vanishes on the conductors one finds

.7/81451:.7";[)2 'L:1>277N (13)

Similarly by integrating the last equation of (4) along the
contour ¢; and by using the second and third boundary
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Fig. 2. Circuit representation of an infinitesimal section of two coupled bitransmission lines.

condition of (4) the following equation is obtained:
bl = 5@,

If (13) and (14) are multiplied by w and combined with
(10) and if —jwf; is replaced by d/dz—inverse spatial
Fourier transform in the longitudinal direction—one finds the
following coupled set of bitransmission line equations:

i=1,2,---,N. (14)

W) Zo(z) ~ T (2)
dl(;l(;) = —jwC(z) — jwXI(2). (15)

An infinitesimal segment of a classical set of transmission lines
corresponds to a coupled LC circuit. For the bitransmission
line of (15) a coupled voltage controlled voltage source and
a coupled current controlled current source has to be added
(see Fig. 2 for two-line case) as was shown for the single
transmission line case in [12] and [15].

IV. PROPERTIES OF ﬁ,i?, AND Z

In this section we will derive a number of properties of
the C', L, X, and Z matrices which are related to the material
parameters and/or geometry of the structure of Fig. 1.

We used the quasi-TEM analysis to construct (15) which
results into some special properties for the C,L, X, and Z
parameters as we will see. However, first we will derive
two general properties of bitransmission lines of type (15)
not restricted to the quasi-TEM analysis. First we examine
the properties of lossless bitransmission lines. The set (15)
will be lossless if R(dT ¢ /dz) = O for all T(z) and $(2),
with ‘R’ the real part of, ‘I’ the transposition operator
and “*’ the complex conjugate operator. If this condition is
elaborated using the relations (15) one finds after some simple
mathematics

=T
(16)

This generalizes the result of one line in [15]. It is easy to show
with (16) that the propagation coefficients 3 of the eigenmodes
in a lossless set (15) are real as expected. Since we assumed
lossless materials in the quasi-TEM analysis the parameters
resulting from these analysis will always satisfy (16).

Second we examine the properties of a reciprocal set of
transmission lines. A set of transmission lines is reciprocal
when

o) - (1) =0 a7

where 1(2), ¢(z) and I(2), ¢(2) are two arbitrary independent
solutions of the set (15). If (17) is elaborated using (15) one
easily finds

=T = =T = =T
C=C L=1 X=-7. (18)

Hence for a lossless reciprocal set of bitransmission lines
it follows that C and L are real and that X and Z are
imaginary. In general the coupled bitransmission lines (15) are
nonbidirectional [24] which means that eigenmodes propagat-
ing in opposite directions in general have different propagation
coefficients. However for a reciprocal set it is easy to show,
using (18) and some properties of determinants, that

Z-pI L _\_
det( = = _) =0
Z+pl _ L _\_
<:>det( e = 7) =0 (19)

where I is the N by N unit matrix. Since the determi-
nant equations in (19) are the eigenvalue equations for the
propagation coefficients 3 and —g respectively, (19) proves
that reciprocal bitransmission lines are bidirectional. This
shows that for bitransmission lines the term bidirectional and
reciprocal essentially have the same meaning.

Now we derive a few properties of the C,L, X and Z
parameters which are strictly related to the quasi-TEM analysis
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behind them. First assume that the whole cross-section consists
of pure nonreciprocal material, i.e. that x(r) = 0 in the whole
cross-section. Then the potential problem (6), (7) is purely
real and hence its solution @, b, and d is real and of course
C,L,X and Z are also real. And due to (16) this means that

C and L are symmetric matrices and that X = Z . Hence,
the set of transmission lines is also nonreciprocal.

Assume that we know the solution C, L, X and Z for given
e(r), u(r),&(r) and {(r) then there is an easy relation with
the solution for ¢’ = ¢,/ = p,& = —j€ and ¢’ = 3¢
which is denoted by primes. To see this let us first assume
that ¢, # O and that ¢; = ¢, =0 (4,5 = 1,2, ---,N and
j # k) in both the original and the associated problem. If
now (7) and (8) are compared for both problems one finds
that ¢/(r) = ¢(r),¢'(r) = jy(r), J. o = jJ.,0 and pg = po
and hence that T = 57 and Q = Q. From (9) it then follows
that ¢, = jcjr and aj;, = a;x. Analogously one can show
that b3y = —jcji and d;, = d;) assuming that ¢, # 0 and
that ¢; = ¢; =0 (6,5 = 1,2, ---, N and j # k). With (11)
it is then easily proved that

/

= /

= = b=
- X 7 =47

h
ol

=/
L =

Qll
Qll

= (20)
Applying (20) twice (to go from £ to —j¢& and from —j5¢€ to
—¢ and at the same time from ¢ to j¢ and from j¢ to —()
shows that both X and Z change sign when both ¢ and ¢ or
both x and x change sign.

The result (20) has an interesting consequence. Assume that
the whole cross-section of the structure consists of pure chiral
or reciprocal material, i.e. that x(r) = 0 in the whole cross-
section. Then, using the technique of previous section, we can
transform this problem to a pure nonreciprocal problem treated
above. With (20) we then can conclude that C and L are real
and symmetric matrices and that X and Z are imaginary with

X = —7T. This means that the condition (18) is satisfied or
that the set of transmission lines is reciprocal for reciprocal
materials. The transition to the nonreciprocal case allows us
also to treat the chiral problem as a pure real problem.

Often the cross section of the structure, like for a mi-
crostrip line, contains a symmetry axis. In this case the
three-dimensional structure is invariant under a rotation over
180° around that symmetry axis taken in one arbitrary cross-
section, for example the section at z = 0. By rotating the
structure Q(z = 0) and ¢(z = 0) remain the same and I(z = 0)
and E(z_: 0) change sign. From (10) it then follows that both
X and Z vanish. This same conclusion can also be obtained
from (15) by demanding that if 3, ¢, T is an eigenmode that
also —3,¢,—1I is an eigenmode. In this important special
case the structure is always represented by a classical set of
telegraphers equations with only C and L different from zero.

It is interesting to 1ook at the case where the cross-section
is homogeneous, ie. where £(r),u(r),£{(r) and ((r) are
independent of r. In this case (7) reduces to two classical
Laplace equations Vz.¢(r) = 0 and VZ4(r) = 0 which can
be solved independently. Now it is easy to show that if C,
is the vacuum (£(r) = €p) capacitance matrix of the structure
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that C and L are given by:

Eplhyr — X2 — k2=
Hr

with ¢ = 1/,/€opt, the speed of light in vacuum. The bi-
isotropy only influences the capacitance matrix.

The two previous paragraphs show that, although the struc-
ture consists of nonreciprocal material, it is not necessary that
the corresponding bitransmission line is nonreciprocal. This
shows that a waveguide consisting of nonreciprocal materials
is not necessary nonbidirectional in accordance with [24].

Finally we point out a discrepancy with the theory of [15].
In [15] only a single bitransmission line is investigated and X
and Z (which are now just scalars) are respectively written as
a+jb and a— jb. The quantity a was called chirality parameter
and the quantity b nonreciprocity or Tellegen parameter. From
the pure chiral and pure nonreciprocal case handled above we
found a result which is just the opposite of this, i.e. a is due
to nonreciprocity and b due to chirality. Moreover from the
general circuit concept for reciprocity (18) it follows that a
bitransmission line with b = 0 and a # 0 is nonreciprocal and
that a line with b # 0 and a = 0 is reciprocal. The reason for
this, in our opinion, unfortunate nomenclature of a and b in
[15] finds its origin in the application of the bitransmission
line model to the propagation of circulary polarized plane
waves in layered bi-isotropic media. The example handled
in [15] indeed gives a nonreciprocal bitransmission line for a
reciprocal medium because only one orientation of polarization
in each propagation direction was taken into account as has
been addressed at the end of [15].

C =

Q

= :—1
. L=5T, Q1)
C

V. GENERALIZATION TO BIANISOTROPIC MEDIA

In this section the generalization to general inhomogeneous
bianisotropic materials is discussed and it is shown for which
bianisotropic materials the theory reduces to the bi-isotropic
case discussed above. For bianisotropic materials the material
parameters in (1) become dyadics. Equation (2) now becomes

(22)

with

]
|
r

(23)

It is assumed that the material defined in (2:2F) is lossless
which means that & = .7 = 7 and { = Z* (see
[16]). For a general material of type (22) we only have that
Bo=FE,o= H,o =0 and that J; o = 0 but not that D, o
and B, are zero. This means that we have the following
relation between the zeroth order transversal components in

(22) after eliminating B, g:

= =
Dtr,O =T (T>Etr,0 +U (T)Btr,O

= ]
Hyo=V (1)Eyo+ W (r)Bg: o (24)



1414
with
=/ = Uter t = = Utr”WTt
T = Ttrtr _'# U = Utrtr + — — 2
sz sz
WersV o W W o, @
= = trz V stp sl =7 trz YV str
= rtr — W = W rtr vy
V = Vit + W, trtr + W
where we have decomposed the four dyadics as
— ﬁtrtr ?trz
P = T (26)
thr P»’«’Z

with P =T ,U,V, or W. Note that in (25) _Utr,z 2ty TOT €xam-
ple denotes a transversal 2 x 2 dyad and not a scalar product
of two vectors. Equations (4) and (6) remain unchanged but
the potentials ¢ and ¥ now satisfy the following equations:

Ve T Vbt Ve U - (Vi X th1) =0
u, [~V X ﬁl V¢ + Vie X W/ (Vi X Yu,)] =0
@7

At the conductors the boundary conditions (8) have to be
replaced by

¢ = constant 3 = constant

— o =/ a
unTungﬁ—unUut—a—%:pO
—_— —— 8
ut'V/'un—a—?—ut'W/‘ut”"(’/)‘: 2,0 (28)
on on

where u; = u, X u,. Since the problem is still linear (9) and
hence (10) remain valid and also (12) to (15) remain valid.
It is interesting to remark that in the pure anisotropic case
(6 =(=0)the potgltial problems (27), (28? for ¢ ,and i are
decoupled and that X and Z are zero since U and V are zero.

It can be verified that the problem (27) (28) reduces to the

bi-isotropic case when T U V and W are multlples of the

unit dyadic. In fact even when T U V and I/V are multiples
of the same arbitrary 2 x 2 dyadlc one can also reduce
the problem to the bi-isotropic case, by means of an affine
transformation (see [16]). This means that if one can solve
the bi-isotropic case one can also solve several bianisotropic
cases. An important special case are uniaxial materials with
the axis along the propagation direction z.

VI. CONCLUSION

The quasi-TEM analysis for multiconductor lines in in-
homogeneous isotropic media was extended to bi-isotropic
media. It was shown that in the quasi-TEM limit the multi-
conductor line can be represented in circuit terms by so-called
coupled bitransmission lines. These bitransmission lines are
characterized by four circuit matrices C, L, X and Z. It was
further shown that for lossless b1transm1ss1on lines C and
~C and I L ) and that X

and Z are Hermitian conjugates (Y = ) For reciprocal

L are Hermitian (6
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bitransmission lines it was shown that ( C and T are symmetric
and that X is minus the transposed of Z . For pure chiral media
(x = 0) it was shown that C and L are real and that X and Z
are imaginary. In the pure nonreciprocal case (x = 0) C and
L remain real and X and Z also become real. Finally it was

shown that X and Z vanish for structures with a symmetry
axis in the cross-section. In the last section the quasi-TEM
analysis was generalized to bianisotropic media.
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